Search results for "apache spark"
showing 3 items of 3 documents
Analyzing big datasets of genomic sequences: fast and scalable collection of k-mer statistics
2019
Abstract Background Distributed approaches based on the MapReduce programming paradigm have started to be proposed in the Bioinformatics domain, due to the large amount of data produced by the next-generation sequencing techniques. However, the use of MapReduce and related Big Data technologies and frameworks (e.g., Apache Hadoop and Spark) does not necessarily produce satisfactory results, in terms of both efficiency and effectiveness. We discuss how the development of distributed and Big Data management technologies has affected the analysis of large datasets of biological sequences. Moreover, we show how the choice of different parameter configurations and the careful engineering of the …
Mining Maximal Frequent Patterns in Transactional Databases and Dynamic Data Streams: A Spark-based Approach
2018
Mining maximal frequent patterns (MFPs) in transactional databases (TDBs) and dynamic data streams (DDSs) is substantially important for business intelligence. MFPs, as the smallest set of patterns, help to reveal customers’ purchase rules and market basket analysis (MBA). Although, numerous studies have been carried out in this area, most of them extend the main-memory based Apriori or FP-growth algorithms. Therefore, these approaches are not only unscalable but also lack parallelism. Consequently, ever increasing big data sources requirements cannot be met. In addition, mining performance in some existing approaches degrade drastically due to the presence of null transactions. We, therefo…
Scalable implementation of dependence clustering in Apache Spark
2017
This article proposes a scalable version of the Dependence Clustering algorithm which belongs to the class of spectral clustering methods. The method is implemented in Apache Spark using GraphX API primitives. Moreover, a fast approximate diffusion procedure that enables algorithms of spectral clustering type in Spark environment is introduced. In addition, the proposed algorithm is benchmarked against Spectral clustering. Results of applying the method to real-life data allow concluding that the implementation scales well, yet demonstrating good performance for densely connected graphs. peerReviewed